
Week 6 Part 1
Kyle Dewey

Monday, July 30, 12

Overview

• Announcement repeat

• Pre-lab #5

• Pointers

• Arrays

• Exam #1 Lingering Questions

Monday, July 30, 12

+3 points on exam

Monday, July 30, 12

Pre-lab #5

Monday, July 30, 12

Pointers

Monday, July 30, 12

Pointers

• Data that “points to” other data

• In my humble opinion, the most difficult
programming concept to grasp

• Questions questions questions...

Monday, July 30, 12

Pointers

• Non-programming example: place of
residence

• Data: Where you actually live

• Pointer: The address of where you live

versus 123 Fake Street

Monday, July 30, 12

Pointers

• Programming example: scanf

• Read in an input and put it someplace

int x;
scanf(“%i”, x); // value of x - WRONG
scanf(“%i”, &x); // where x is
 // & is called the
 // address-of
 // operator

Monday, July 30, 12

Why the &

• Analogy: ordering an integer online from
scanf co.

• scanf co. needs to know where to send
your brand-new integer

Monday, July 30, 12

Why the &

int x;
scanf(“%i”, &x); // where x is

• Send the integer to this address (where x
is)

Monday, July 30, 12

Why the &

int x;
scanf(“%i”, x); // what x holds

• You just shipped a copy of your entire
house to scanf co.

• scanf co. is likely a little confused

• You still don’t have your integer

Monday, July 30, 12

Leaving the Analogy

• The world: memory

• Memory is a linear sequence of bytes

• Where something is in memory: address

• Each byte of memory can be addressed

• What something is in memory: value

Monday, July 30, 12

Memory

0x23 0xA4 0x2F 0x20 0xA4 0xB8 0xCAValue

Address 0 1 2 3 4 5 6

Monday, July 30, 12

Types

• If a * follows a type name, it’s a pointer to
that type

• int*: a pointer to an integer

• Can also say an integer pointer for short

Monday, July 30, 12

Usage

• The & (address-of) operator will get the
address of a variable

• If the variable’s type is int, then using &
on the variable will yield an int*

int x = 5;
int* pointer;
pointer = &x;

Monday, July 30, 12

Usage

• * also acts to grab the value at the given
address or put a new value in the given
address

• Called the dereference operator

• Note this is *variable as opposed to
number * number

Monday, July 30, 12

Dereference

• Getting the value:

int x = 5;
int* pointer;
pointer = &x;
*pointer; // returns 5

Monday, July 30, 12

Dereference

• Assigning a new value

int x = 5;
int* pointer;
pointer = &x;
*pointer = 10; // x is now 10

Monday, July 30, 12

Useful Example

int readDigit(int* whereToPut) {
 int readIn = getchar();
 if (readIn >= ‘0’ &&
 readIn <= ‘9’) {
 *whereToPut = readIn - ‘0’;
 return 1;
 } else {
 return 0;
 }
}

Monday, July 30, 12

Example #1

int x = 5;
int* pointer;
pointer = &x;
*pointer = 11;
// what does x equal?

Monday, July 30, 12

Example #2

int x = 7;
int* pointer = &x;
int y = 3 + *pointer;
// what does y equal?

Monday, July 30, 12

Example #3

int x = 7;
int y = 3;
int* xPointer = &x;
int* yPointer = &y;
*xPointer = y;
*yPointer = x;
// what do x and y equal?

Monday, July 30, 12

Example #4

int x = 7;
int y = 3;
int* xPointer = &x;
int* yPointer = &y;
xPointer = yPointer;
yPointer = xPointer;
// what do x and y equal?

Monday, July 30, 12

Example #5

int x = 7;
int y = 3;
int* xPointer = &x;
int* yPointer = &y;
int z = *xPointer + *yPointer;
*(&z) = 2 + 2;
// what do x, y, and z equal?

Monday, July 30, 12

What about char*?

• The type of a string

• ...but this looks like a char pointer?

• ...and what about the boxed notation?

• i.e. string[0], string[1]...

Monday, July 30, 12

Recall Strings

• Strings are a sequence of characters ended
by a null byte

“Hello” = ‘H’,’e’,’l’,’l’,’o’,’\0’

Monday, July 30, 12

Importance of This

• A string is variable length

• A sequence of chars

• A char variable only holds one character

• We want to hold a variable number of
chars

“Hello” = ‘H’,’e’,’l’,’l’,’o’,’\0’

Monday, July 30, 12

char*

• This code is invalid:

char string = “moo”;

• But this code is not:

char* string = “moo”;

Monday, July 30, 12

Why a Pointer?

• All valid:

char* string1 = “moo”;
char* string2 = “cow”;
char* string3 = “bull”;
char* string4 = “foobar”;
char* string5 = “”;

• Pointers can be used for something special...

Monday, July 30, 12

Arrays

Monday, July 30, 12

Arrays

• Arrays are a sequence of elements of the
same type

• Arrays can be of variable length, but once
they are created they cannot be resized

• (we will see an exception to this later)

Monday, July 30, 12

Arrays and char*

• A string is a sequence of chars...

• An array is a sequence of elements of the
same type...

• Strings are arrays

“Hello” = ‘H’,’e’,’l’,’l’,’o’,’\0’

Monday, July 30, 12

Arrays and Pointers

• Pointers can be used to reference (i.e.
point to) arrays

• Example:

char* string = “foo”;

‘f’, ‘o’, ‘o’, ‘\0’

string
points to

Monday, July 30, 12

Another Look
char* string = “foo”;

‘f’

‘o’

‘o’

‘\0’

Value
Memory
Location

0

1

2

3

string

(holds memory
location 0)

points to

Monday, July 30, 12

Pointer Arithmetic

• Pointers hold memory addresses

• Memory addresses are sequential

• We can do arithmetic with them

• NOTE: generally, addition by positive
numbers is the only thing possible, and
it’s certainly the only thing people won’t
hate you for

Monday, July 30, 12

Pointer Arithmetic

char* string = “foobar”;
printf(“%s”, string + 3);
// prints “bar”

Monday, July 30, 12

Pointer Arithmetic

‘f’

‘o’

‘o’

‘\0’

Value
Memory
Location

0

1

2

3

char* string = “foo”;
printf(“%s”, string + 1);

string

+

1

0 1

1

Monday, July 30, 12

More on Arrays

• It’s possible to make arrays of other kinds
like so:

int arr[] = { 1, 2, 3, 4 };
// initialized to 1,2,3,4

• This is not a block!

Monday, July 30, 12

More on Arrays

• It’s possible to make an array of a given
length uninitialized:

• Note that the size must be a constant

int arr2[50];
// space for 50 integers

Monday, July 30, 12

Array Length

• The length of an array must be tracked
separately

• Alternatively, the last element can be set to
some sentinel value

• For C strings, ‘\0’ is a sentinel value

Monday, July 30, 12

Pointer Arithmetic

• When we add, we may increment by more
than a byte

• How much we increment by depends on
the data type

• A 1 byte char increments by 1 byte

• A 4 byte int increments by 4 bytes

Monday, July 30, 12

Another Look
int arr[] = { 1, 2, 3, 4 };

1

2

3

4

Value
Memory
Location

0

4

8

12

arr

(holds memory
location 0)

points to

Monday, July 30, 12

Pointer Arithmetic

Value
Memory
Location

int arr[] = { 1, 2, 3, 4 };
arr + 1

arr

+

1

1

2

3

4

0

4

8

12

0 4

4

1 * sizeof(int)
Monday, July 30, 12

Getting Individual
Elements

• We can do this:

int arr[] = { 1, 2, 3, 4 };
*(arr + 1)

• We can also use the equivalent boxed
notation:

int arr[] = { 1, 2, 3, 4 };
arr[1]

Monday, July 30, 12

Boxed Notation

• The notation string[0] refers to the
0th element of an array

• The notation string[n] refers to
the nth element of an array

Monday, July 30, 12

Boxed Notation

• This is actually syntactic sugar

string[n]

...is equivalent to...

*(string + n)

Monday, July 30, 12

Arrays and Loops

• for loops go very well with arrays

• Arrays have fixed length

• for loops are generally for a fixed
number of iterations

Monday, July 30, 12

Example

int sum(int* array, int length) {
 int retval = 0;
 int x;
 for(x = 0; x < length; x++) {
 retval = retval + array[x];
 }
 return retval;
}

Monday, July 30, 12

Question

• What is wrong with this code?

void printInts(int* arr, int length){
 int x;
 for(x = 0; x <= length; x++) {
 printf(“%i\n”, arr[x]);
 }
}

Monday, July 30, 12

Answer
• There is no arr[length]

• Who knows what will happen?

void printInts(int* arr, int length){
 int x;
 for(x = 0; x <= length; x++) {
 printf(“%i\n”, arr[x]);
 }
}

Monday, July 30, 12

Side Note: String
Concatenation

• Many questions regarding string
concatenation in C for the project

• Short answer: don’t use string
concatenation

• Now for the long answer...

Monday, July 30, 12

String Concatenation

• Say we are given two strings, first and
second

• Say we are given a memory location named
result where we put the result

void concat(char* first,
 char* second,
 char* result);

Monday, July 30, 12

void concat(char* first,
 char* second,
 char* result) {
 int firstLen = strlen(first);
 int secondLen = strlen(second);
 int x;
 for (x = 0; x < firstLen; x++) {
 result[x] = first[x];
 }
 for (x = 0; x < secondLen; x++) {
 result[firstLen + x] =

 second[x];
}
result[firstLen + secondLen] = ‘\0’;

}
Monday, July 30, 12

Works Except...

• Where did result come from?

• Needs to be large enough for the result

• Herein lies the problem

void concat(char* first,
 char* second,
 char* result);

Monday, July 30, 12

Memory Allocation

• Generally, we only know how big result
must be at runtime

• Need dynamic memory allocation

• Much later, and it’s not easy

void concat(char* first,
 char* second,
 char* result);

Monday, July 30, 12

Exam #1 Lingering
Questions

Monday, July 30, 12

